

Long-term Evolution of Tightly-Packed Stellar Black Holes in AGN Disks: Formation of Merging Black-Hole Binaries via Close Encounters

> Jiaru Li, Dong Lai, Laetitia Rodet Department of Astronomy, Cornell University

> > DDA 53rd Annual Meeting

Why do we care about black hole binaries in AGN disks?

Stone et al. 2017

- Because they may merge! (e.g., Baruteau et al. 2011; Stone et al. 2017; Leigh et al. 2018; Samsing et al. 2020; Li et al. 2021, 2022; Li & Lai 2022)
- Q: How to form BH binaries in AGN disks? ----- Close encounters between embedded single BHs.

Our study: long-term **N-body simulations** of SMBH + embedded BHs

• Initial condition:

$$a_2 - a_1 = 2R_H$$
 where $R_H = \frac{a_1 + a_2}{2} \left(\frac{m_1 + m_2}{3M}\right)^{1/3}$

(Dynamical instability will occur!)

- Reasons for using closely-packed orbits:
 - Large BH population in an AGN disk
 - Differential migration

Cornell University

Our study: long-term **N-body simulations** of SMBH + embedded BHs

- Simulations:
 - Run for at least $10^5 P_1$ (orbits around the SMBH)
 - Pure N-body and no gas effect for now (gas effect is discussed in the paper).
- Outcomes of this instability:
 - BH collisions? -- unlikely
 - ➢ BH ejections? -- requires very long time
 - Recurring close encounters -- will be many!
 (we can study this stochastic process statistically)

Pure N-body results

Number of close encounters (CE)

*r*_p: minimum BH separation during a CE*P*₁: orbital period around the SMBH

 $R_{\rm H}/a_{\rm rel}$

Hardening BH encounters with GW radiation

• BHs can be captured into long-lived binary if enough energy is radiated **at once**:

• $r_{\rm p}$ needs to be smaller than a critical capture radius:

$$\frac{r_{\rm p}}{R_{\rm H}} < \frac{r_{\rm cap}}{R_{\rm H}} \simeq 10^{-4} \left(\frac{4\mu}{m_{12}}\right)^{\frac{2}{7}} \left(\frac{10^6 m_{12}}{M}\right)^{\frac{10}{21}} \left(\frac{a_{\rm SMBH}}{100 G M/c^2}\right)^{-5/7}$$

Hardening BH encounters with GW radiation

• $r_{\rm p}$ needs to be smaller than the critical capture radius:

$$\frac{r_{\rm p}}{R_{\rm H}} < \frac{r_{\rm cap}}{R_{\rm H}} \simeq 10^{-4}$$

 We show numerically and analytically that *r*_p follows a power-law cumulative probability distribution, which allows *r*_p to be arbitrarily small.

Calculate the GW capture rate:

Number of binaries formed = (Probability of $r_p < r_{cap}$ for one CE) × (Number of CEs)

$$\langle N_{\text{capture}} \rangle \simeq 6 \times 10^{-5} \left(\frac{t}{P_1} \right)^{0.52} \left(\frac{r_{\text{cap}}}{10^{-4} R_{\text{H}}} \right)$$

Fiducial results: Average systems take ~ $10^8 P_1$ to get one GW capture.

* We expect these captured binaries to merge quickly. Their mergers will show high eccentricities when entering the LIGO band.

Dissipation through disk gas

- Drag force and torque from the AGN disk:
 - Considered in our paper:

$$oldsymbol{F}_{
m drag} = -rac{oldsymbol{v} - oldsymbol{v}_{
m K}}{ au_{
m drag}},$$
 $oldsymbol{F}_{
m trap} = -rac{\Omega_{
m K,0}(r-r_0)}{ au_{
m trap}} \hat{oldsymbol{ heta}},$

- They **do not** increase the GW capture rate.

(Li, Lai, and Rodet 2022, arxiv:2203.05584)

Dissipation through disk gas

• Collisions between circum-stellar-BH disk (ongoing work, Li et al. 2022 in prep).

Takeaways:

- Dynamical instability in AGN disks produces lots of CEs:
 - Without dissipation, CE pairs are **short-lived**.
 - Separation at CEs can be short enough for GW emission.
- GW radiation can **capture** BHs into binary:
 - Capture efficiency ~ $N(t) \times \text{Prob}(r_p < r_{\text{cap}})$
 - Our average systems take ~ $10^8 P_1$ to get one GW capture.
- Check out our paper for more details (Li, Lai, & Rodet 2022, <u>arxiv:2203.05584</u>):
 - Gas effects; Parameter studies (mass, inclination, etc.); More explanations and discussions.

Inclinations

- Exactly co-planar systems have the highest GW capture rate: $\sim 10^8 P_1$ per capture
- However, exact co-planarity is not realistic because any non-zero small mutual inclination can grow.

 $Prob(r_p)$ changes with the mutual inclination.

Small mutual inclination converges to our fiducial inclination.