

Formation of Black Hole Binaries in AGN disks through Close Encounters

Jiaru Li Cornell & T-2 LANL

Aug 04, 2022

Supervisors and Collaborators: Hui Li, Adam Dempsey and Shengtai Li (LANL) Dong Lai and Laetitia Rodet (Cornell)

Other Colleagues: J. Calcino (LANL), A. Dittmann (LANL), R. Li (Cornell), Ya-Ping Li (LANL→SHAO), B. Mishra (LANL)

Why do we care about black hole (BH) binaries?

BH binaries are:

- the simplest systems that can produce significant gravitational wave (GW) signal,
- the main GW sources seen by LIGO (binary inspiral/merger).

Why do we care about BH binaries in AGN disks?

- GW radiation is weak when BHs are not very close to each other. → No inspiral/mergers in Newtonian two-body problem.
- A binary embedded in a gaseous disk → May be able to contract.

Image Credits: NASA/GSFC Conceptual Image Lab

Contraction of BH binaries due to scatterings (e.g., *Samsing et al. 2022*).

We care about BH binaries in AGN disks...

- They may merge! (e.g., Baruteau et al. 2011; Stone et al. 2017; Leigh et al. 2018; Li et al. incl. **JL** 2021, 2022; Dempsey et al. 2022; Li & Lai 2022a,b. Samsing et al. 2022)
- However, almost all previous studies consider pre-existing binaries.
- Q: How to form these BH binaries in AGN disks? A (in this talk): Close encounters between embedded single BHs.

Formation of BH binaries: long-term N-body simulations

Initial condition:

$$a_2 - a_1 = 2R_H$$
 where $R_H = \frac{a_1 + a_2}{2} \left(\frac{m_1 + m_2}{3M}\right)^{1/3}$ (Dynamical instability will occur!)

- Reasons for using closely-packed orbits:
 - Large BH population in an AGN disk
 - Differential migration
 - Focus on the close encounters

(*Li*, *Lai*, and *Rodet 2022*, arxiv:2203.05584)

Formation of BH binaries: long-term N-body simulations

- Simulations:
 - Run for at least $10^5 P_1$ (orbits around the SMBH)
 - Pure N-body and no gas effect for now
- Outcomes of this instability:
 - ➤ BH collisions? -- unlikely
 - ➤ BH ejections? -- requires very long time
 - > Recurring close encounters -- will be a lot! (we can study this stochastic process statistically)

(*Li*, *Lai*, *and Rodet 2022*, arxiv:2203.05584)

N-body results

Number of close encounters (CE)

 r_p : minimum BH separation during a CE

P₁: orbital period around the SMBH

N-body results

Energy of a CE:

$$E = -\frac{Gm_1m_2}{2a_{rel}} = \frac{1}{2}\mu v_{rel}^2 - \frac{Gm_1m_2}{r_{rel}}$$

'Stability' of a CE:

$$R_{\mathrm{H}}/a_{\mathrm{rel}} = \frac{Gm_1m_2}{2a_{\mathrm{rel}}}/\frac{Gm_1m_2}{2R_{\mathrm{H}}}$$

Most encountering BH pairs are disrupted by the SMBH tidal force within $1 P_1$.

Reduce CE energy through GW radiation

BHs can be captured into long-lived binary if enough energy is radiated at once:

$$\Delta E_{\text{GW}} = \frac{85\pi}{12\sqrt{2}} \frac{G^{7/2} \mu^2 m_{12}^{5/2}}{c^5 r_{\text{p}}^{7/2}} \qquad \gtrsim \eta \frac{G m_1 m_2}{R_{\text{H}12}}$$

energy radiated by GW (Quinlan & Shapiro 1989)

energy needs to be removed for binding

• $r_{\rm p}$ needs to be smaller than a critical capture radius:

$$\frac{r_{\rm p}}{R_{\rm H}} < \frac{r_{\rm cap}}{R_{\rm H}} \simeq 10^{-4} \left(\frac{4\mu}{m_{12}}\right)^{\frac{2}{7}} \left(\frac{10^6 m_{12}}{M}\right)^{\frac{10}{21}} \left(\frac{a_{\rm SMBH}}{100 GM/c^2}\right)^{-5/7}$$

Reduce CE energy through GW radiation

• $r_{\rm p}$ needs to be smaller than the critical capture radius:

$$\frac{r_{\rm p}}{R_{\rm H}} < \frac{r_{\rm cap}}{R_{\rm H}} \simeq 10^{-4}$$

 We show numerically and analytically that $r_{
m p}$ follows a power-law cumulative **probability distribution**, which allows r_p to be arbitrarily small.

Reduce CE energy through GW radiation

• $r_{\rm p}$ needs to be smaller than the critical capture radius:

$$\frac{r_{\rm p}}{R_{\rm H}} < \frac{r_{\rm cap}}{R_{\rm H}} \simeq 10^{-4}$$

 We show numerically and analytically that $r_{
m p}$ follows a power-law cumulative **probability distribution**, which allows $r_{\rm p}$ to be arbitrarily small.

* We expect these captured binaries to merge quickly. Their mergers will show high eccentricities when entering the LIGO band.

Takeaways from N-body results

- Dynamical instability in AGN disks produces lots of CEs:
 - Without dissipation, CE pairs are short-lived.
 - Separation at CEs can be short enough for GW emission.
- GW radiation can capture BHs into binary:
 - With a very small probability $\sim \frac{r_{\rm cap}}{R_{\rm H}} \ll 1$.
 - These captured binaries should merge very quickly.

Formation of BH binaries: hydrodynamics simulations

Initial condition:

$$a_2 - a_1 = 2R_{\mathrm{H}}$$

(Close encounter at the first conjunction)

- Simulation setup:
 - $M_{\text{SMBH}} = 1$, $m_1 = 10^{-5}$, $m_2 = 5 \times 10^{-6}$
 - Thin disk H/R = 0.01, low viscosity $\alpha = 0.01$.
 - Isothermal disk.
 - High resolution with 100 grid cells per $R_{\rm H}$, where $R_{\rm H}=0.017R_0$

Formation of BH binaries: hydrodynamics simulations

 $X [R_0]$

Initial condition:

$$a_2 - a_1 = 2R_{\rm H}$$

(Close encounter at the first conjunction)

- Simulation setup:
 - $M_{\text{SMBH}} = 1$, $m_1 = 10^{-5}$, $m_2 = 5 \times 10^{-6}$
 - Thin disk H/R = 0.01, low viscosity $\alpha = 0.01$.
 - Isothermal disk.
 - High resolution with 100 grid cells per $R_{\rm H}$, where $R_{\rm H}=0.017R_0$

Formation process

Formation process

Energy change

 $\delta x [R_{\rm H}]$

0.4

0.2

0.0

-0.2

δy [R_H]

 $\delta x [R_{\rm H}]$

10²

10¹

₹10⁰

Energy change rate of the binary

0.4

0.2

10²

10¹

Analysis of the departure drag

Time evolution of BHs in the parameter space of the binary relative energy $(E_{\rm bin})$ and separation ($|r_{rel}| = |r_1 - r_2|$).

$$\boldsymbol{E_{\text{bin}}} = \frac{1}{2}\mu v_{\text{rel}}^2 - \frac{Gm_1m_2}{r_{\text{rel}}}$$

Analysis of the departure drag

Parameter space for binary formation

Parameter space for binary formation

 $E_{\rm in} := E_{\rm bin}$ | before pericenter

Forming binary requires:

- sufficiently large gas mass
- sufficiently small initial binary energy

Resulted binary orbit after formation

- small semi-major axis: $\frac{a_{\rm bin}}{R_{\rm H}} \sim 0.1$
- large eccentricity: $e_{\rm bin} > 0.5$
- retrograde rotation: $\ell_{\rm bin} < 0$

Summary

- Mergers of BH binaries embedded in AGN disks are considered important sources of gravitational wave.
- In the low gas density limit, dynamical instability produces lots of close encounters. \rightarrow In rare events of every deep encounters, very tightly-bounded GW-dominated binaries can form.
- When the gas density is sufficiently high, close encounters can form bound binaries due to the collision between the two CSDs. -> Formation-per-encounter ratio is much higher than in the low density limit.
- The resulted BH binary orbits can be highly eccentric, compact, and retrograde.

