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Cornell University

Why do we care about BH
binaries in AGN disks?

* Mergers in AGN disks may have
distinct observable distribution of mass,
spin, and eccentricity (e.g., McKernan+
2018, Yang+ 2019; Gerosa & Fishbach
2021; Li+2022).

* Mergers may also produce
electromagnetic counterparts (e.g.,
Stone+ 2017; McKernan+ 2019;
Graham+ 2020).

Image Credits: NASA/GSFC Conceptual Image Lab



Cornell University

Why do we care about BH
binaries in AGN disks?

* AGN disks may assist the BH
binaries to evolve toward their
mergers.

Image Credits: NASA/GSFC Conceptual Image Lab
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Mechanisms to merge an embedded binary..

lSingle A Eccentric Merger

\

Contraction of BH binaries due to scatterings
(e.g., Leigh+ 2018; Samsing+ 2022).
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Mechanisms to merge an embedded binary..

Eccentricity excitation due to evection resonances
(e.g., Bhaskar+ 2022; Muiioz+ 2022).
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Mechanisms to merge an embedded binary..
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Contraction of BH binaries due to the
surrounding gas

(e.g., Li+ incl. JL 2021, 2022; Dempsey+
2022, Li and Lai 2022a, b).




about BH binaries in AGN disks...

* They may merge! (e.g., Baruteau+ 2011, Stone+ 2017; Leigh+ 2018; Li+ incl. JL
2021, 2022; Dempsey et al. 2022; Li & Lai 2022a,b; Samsing et al. 2022)
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* (Q: How to form these BH binaries in AGN disks?



about BH binaries in AGN disks...

* They may merge! (e.g., Baruteau+ 2011, Stone+ 2017; Leigh+ 2018; Li+ incl. JL
2021, 2022; Dempsey et al. 2022; Li & Lai 2022a,b; Samsing et al. 2022)

* However, almost all previous studies consider pre-existing binaries.

* (Q: How to form these BH binaries in AGN disks?
A (in this talk): Close encounters between embedded single BHs.



Formation of BH binaries: long-term N-body simulations

2

(Li, Lai, and Rodet 2022)

Initial condition:
1/3

a; +a, (m1 + mz)
2 3IM
(Dynamical instability will occur!)

a, —a; = 2Ry where Ry =

Reasons for using closely-packed orbits:
— Large BH population in an AGN disk
— Differential migration

— Focus on the close encounters



Formation of BH binaries: long-term N-body simulations

* Simulations:
— Run for at least 10°P; (orbits around the SMBH)
’ — Pure N-body and no gas effect for now

* QOutcomes of this instability:
» BH collisions? -- unlikely
» BH ejections? -- requires very long time

» Recurring close encounters -- will be a lot!
(we can study this stochastic process statistically)



Formation of BH binaries: long-term N-body simulations

Radius Ry at the BH COM
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Formation of BH binaries: long-term N-body simulations

Radius Ry at the BH COM
e * Simulations:
// \\\ — Run for at least 10°P; (orbits around the SMBH)
o ! \\‘ — Pure N-body and no gas effect for now

Movie link:
https://lijiaru0303.github.io/files/talk-
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Outcomes of this instability:
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N-body results

200

Number of close encounters (CE)

rp,: minimum BH separation during a CE

P,: orbital period around the SMBH

50

Number of close encounters

No(t = 105P;)
(No) = 124

N;(t=10°P;)

(N1) = 22

CE2

T'p < 0.01 RH

40000
t[P1]

80000

N,(t = 10°P;)

(N2)=2.6

0.2 0.4
Probability

0.6



N-body results

Energy of a CE:
Gmlmz 1 2 Gm1m2
E=—- > = E:uvrel -
Arel Trel

’Stability’ of a CE:

Gm1m2 Gm1m2
20y 2Ry

Ry/a.e =

Most encountering BH pairs are disrupted
by the SMBH tidal force within 1 P,.
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Reduce CE energy through GW radiation

* BHs can be captured into long-lived binary if enough energy is radiated at once:

85m G/ 12 leQ > nG’ml’mQ
= 7/2 ~ T
12v2 57/

energy radiated by GW energy needs to be
(Quinlan & Shapiro 1989)  removed for binding

AFEcw =
Ru12

* 1, needs to be smaller than a critical capture radius:
2 10

» T o g0 (SR (106’"12)21 (s )—5/7

Ry Ry myo M 100GM /c?




Reduce CE energy through GW radiation

* 1 needs to be smaller than the critical

capture radius:

T Tca _
e
Ry Ry

* We show numerically and analytically that
rp, follows a power-law cumulative

probability distribution, which allows 7, to
be arbitrarily small.
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Calculate the GW capture rate:

Number of binaries formed = (Probability of r <r,,, for one CE) x (Number of CEs)

. 052 /o
(Neapture) = 610 (P_l) (10—4RH)

Fiducial results: Average systems take ~ 108P; to get one GW capture.



Cornell University

Calculate the GW capture rate:

Number of binaries formed = (Probability of r <r,,, for one CE) x (Number of CEs)

. 052 /o
(Neapture) = 610 (P_l) (10—4RH)

Fiducial results: Average systems take ~ 108P; to get one GW capture.

* We expect these captured binaries to merge quickly. Their mergers
will show high eccentricities when entering the LIGO band.
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) —— fiducial: no disk force
E 2.5 __. Tgrag = 10°P,
% —— Tdrag = 10°P;
- - . = 2 2.0 == Typ=10%P,
Dissipation through disk gas e A
8 1.51 ==+ Tdrag = Terap = 10°P;
N — Tarag= Tuap=10°P; | __me=m="TT
* Drag force and torque from the AGN disk: £10
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i=10"5Ry/a, . . .
= 10-*Ru/a, inclination.

i= 10_3RH/61
i=10"2Ry/a,
i= 10‘1RH/31

* Exactly co-planar systems have the
highest GW capture rate:

1073

~ 10*P; per capture 10-4 ] el =Rl
104 103 102 101 100
rp/RH

* However, exact co-planarity is not
realistic because any non-zero small ==
mutual inclination can grow.

Small mutual
inclination
converges to our
fiducial
inclination.
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Takeaways from N-body results

* Dynamical instability in AGN disks produces lots of CEs:
— Without dissipation, CE pairs are short-lived.
— Separation at CEs can be short enough for GW emission.

* GW radiation can capture BHs into binary:

— With a small probability ~ —** <« 1.
H

— Number of binaries formed = (Probability of r,<r,, for one CE) x (Number of CEs)



Formation of BH binaries: hydrodynamics simulations

e Initial condition:

’ az—a1=2RH



Formation of BH binaries: hydrodynamics simulations
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e Initial condition:

aA, — A1 = ZRH



Formation of BH binaries: hydrodynamics simulations
200 (Li+ to be submitted)

s * Initial condition:
a, — a1 = ZRH
(Close encounter at the first conjunction)

* Simulation setup:
— Meygg =1, m; =107°, m, =5x107°
— Thin disk H/R = 0.01, low viscosity a =
0.01.
— Isothermal disk.

— High resolution with 50> 100 grid cells per
Ry, where Ry = 0.017R,

X IRy
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Simulation outcomes
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Simulation outcomes
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(for those are interested..) No-formation cases...
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We focus on the outcome of the first
close encounters.

But, just to point out the following
considerations:

* eccentricity damping

 orbital migration



Analysis: formation mechanism -- a departure drag
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Analysis: formation mechanism -- a departure drag
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Analysis: criteria for binary formation
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Forming binary requires:

sufficiently large gas mass
sufficiently small initial
binary energy



Analysis: criteria for binary formation
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Summary

Mergers of BH binaries embedded in AGN disks are considered important sources of
gravitational wave.

* When the gas effect is negligible, dynamical instability produces lots of close encounters. = In
rare events of every deep encounters, with a certain probability, very tightly-bounded captured
binaries can form.

* When the gas density is sufficiently high, close encounters can form bound binaries due to the
collision between the two CSDs. = Increases the formation-per-encounter ratio.

* The resulting BH binary orbits can be highly eccentric, compact, and retrograde. = May be
considered as the “initial configuration” of the “pre-existing” binaries.



