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ABSTRACT

An increasing number of protoplanetary disks shows observational signatures of warps and misalign-

ments, raising questions of how disks sustain coherent warps and how they may break into misaligned

pieces. We study the steady-state structures and breaking conditions of warped disks. To focus on the

hydrodynamics, while remaining agnostic about what forces the warp, we adopt a simple but physi-

cally motivated setup: rather than including an explicit perturber or external torque, we fix the disk

inclination angles βin and βout at the inner and outer boundaries. The disk is hence constrained to

accommodate a warp between the boundaries. By varying the boundary misalignment |βout − βin|,
we can explore the linear regime, the nonlinear regime, and the onset of breaking, while having good

control over the warp amplitude. Combining this model with analytical theories and three-dimensional

hydrodynamic simulations, we carry out a clean and systematic investigation of the hydrodynamic be-

haviors of warped disks. We find that, with small warps, disks settle into warp steady states that are

well described by the linear theory. Moderately warped disks enter the nonlinear regime, showing sev-

eral distinct features such as torque saturation, vertical “bouncing” motion of gas, and enhanced mass

accretion rates. Measurements of these effects in our simulations show good quantitative agreement

with nonlinear theories. Strongly warped disks are unstable: these disks are susceptible to a runaway

growth of warp amplitude that ultimately leads to disk breaking. This instability may be caused by

the nonlinear saturation of the disk internal torque, which occurs roughly when the warp amplitude

exceeds a critical value |ψ|crit ≃ 2
√
α for Keplerian disks.

1. INTRODUCTION

Accretion disks are not always flat; gas circulating the

same central object at different radii may have different

orbital inclinations, producing warped structures.

Recent observations have found an increasing amount

of evidence that such warps commonly exist in proto-

planetary disks. In near-infrared scattered light images,

many disks exhibit non-axisymmetric dark regions (e.g.,

Marino et al. 2015; Stolker et al. 2017; Benisty et al.

2018; Casassus et al. 2018; Muro-Arena et al. 2020; Kep-

pler et al. 2020; Kraus et al. 2020), which is often in-

terpreted as shadows cast by warps (see Benisty et al.

2023). Complementary evidence comes from molecular

line observations, through which several disks are found

to have large-scale m = 1 velocity structures consistent

with warped or non-planar gas flows (e.g., Panić et al.

2010; Pineda et al. 2014; Casassus et al. 2015; Winter

et al. 2025). In addition, increasingly many systems

have been revealed to host both warps and multiple mis-

aligned disk components, pointing to a rich dynamical

history involving both disk bending and breaking (e.g.,

Kraus et al. 2020; Muro-Arena et al. 2020; Bohn et al.

2022). Together, these observations raise two fundamen-

tal questions: how do disks bend and sustain coherent

warps, and under what circumstances do they break into

misaligned components?

Theories of warped disks have been developed over the

past several decades (see, e.g., Nixon & King 2016, for an

overview). In these studies, a warp is formally defined as

the radial derivative of the disk inclination. Misaligned

disk annuli can exert internal torques on each other (due

to pressure, etc), which in turn drives the changes of the

inclination profiles of the whole disk.

For nearly-Keplerian disks, how warp evolves depends

on the viscous parameter α (Shakura & Sunyaev 1973)

relative to the disk aspect ratio h ≡ H/R. Linear the-

ories show that, for α ≲ h, warps can propagate as

bending waves at approximately half of the sound speed,

while being viscously damped at a rate ∼ αΩ, where Ω is

the angular velocity of the gas (Papaloizou & Lin 1995;

Lubow & Ogilvie 2000). When α ≳ h, viscous damping

becomes strong enough to suppress wave propagation,

so the warp instead evolves in a diffusive manner (Pa-

paloizou & Pringle 1983). As a result, in the absence of

external torques, free warps tend to flatten on the in-
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termediate timescale between the orbital period ∼ Ω−1

and the global viscous timescale ∼ (αh2Ω)−1. Warps in

forced disks, on the other hand, may settle into steady

states on the intermediate timescale if the relevant forc-

ing acts more slowly (e.g., Lubow & Ogilvie 2000; Fou-

cart & Lai 2014). Note that, if α is negligible, the evolu-

tion becomes sensitive to the difference between orbital

and epicylic frequencies (i.e., the non-Keplerianity, see

e.g., Ogilvie 1999, or Section 2). Hydrodynamic sim-

ulations have found good agreement with these linear

theories (e.g., Lodato & Pringle 2007; Lodato & Price

2010; Kimmig & Dullemond 2024; Fairbairn 2025) .

The nonlinear regime, where warp amplitudes are

large, is more complex and less well understood. Analyt-

ical theories predict several important nonlinear effects,

such as modifications of the internal torques (Ogilvie

1999; Ogilvie & Latter 2013a; Dullemond et al. 2022),

changes to the mass accretion flow (e.g., Pringle 1992;

Ogilvie 1999), and the so-called “bouncing effect”, in

which gas elements would perform rapid vertical com-

pression and expansion as they orbit around the star

(Ogilvie & Latter 2013a; Fairbairn & Ogilvie 2021a,b;

Held & Ogilvie 2024). These features have been iden-

tified in several numerical simulations (e.g., Lodato &

Price 2010; Sorathia et al. 2013; Deng & Ogilvie 2022;

Kaaz et al. 2023, 2025; Kimmig & Dullemond 2024).

In low-α disks, wave coupling can also lead to para-

metric instability (Gammie et al. 2000; Ogilvie & Lat-

ter 2013b), which was not seen in the early numerical

studies but emerged in recent high-resolution simula-

tions (e.g., Paardekooper & Ogilvie 2019; Deng et al.

2021; Deng & Ogilvie 2022; Fairbairn & Stone 2025).

Due to the complex nature of nonlinear hydrodynamics,

recent studies tend to either pursue more powerful sim-

ulations (e.g., Deng & Ogilvie 2022; Kaaz et al. 2025)

or develop alternative frameworks, such as affine mod-

els (Ogilvie 2018) and ring models (Fairbairn & Ogilvie

2021a).

Extreme nonlinear evolution can lead to disk break-

ing, where the disk splits into multiple disconnected

planes (e.g., Larwood et al. 1996; Nixon et al. 2012,

2013; Zhu 2019; Liska et al. 2021). Several theories have

been proposed to explain the mechanisms of breaking,

including resonance with tidal forcing (Lubow & Ogilvie

2000; Martin et al. 2020), rapid nodal precession (Zhu

2019; Martin et al. 2020; Rabago et al. 2024), and lin-

ear instabilities related to the anti-diffusion of the disk

density (Doǧan et al. 2018; Raj et al. 2021). Yet a gen-

eral condition and physical mechanisms that trigger disk

breaking remain unclear.

In this paper, we focus on the long-lived warp steady

state (WSS). Such states are more likely to be observ-

able than their transient predecessors: given the life-

times of protoplanetary disks, any warps present are

likely to have relaxed into quasi-steady configurations.

Our primary goals are to determine the WSS structures

of disks, both in the linear and the nonlinear regimes,

and to diagnose how a sufficiently large warp drives disk

breaking.

We perform both theoretical analysis and numerical

simulations. To focus on the hydrodynamics, while re-

maining agnostic about what forces the warp, we adopt

a simple but physically motivated setup: rather than

include an explicit perturber or external torque, we fix

the disk inclination angles βin and βout at the inner and

outer boundaries. The disk is hence constrained to ac-

commodate a warp between the boundaries, and we can

study the resulting steady-state structure. In the simu-

lations, we also lower the surface density in the middle of

the disk (but keep it non-empty), allowing us to localize

the warp and reduce the possible influence of artificial

boundary conditions. Our setup provides a clean lab-

oratory for testing the hydrodynamic response of disks

to generic perturbations. By varying the boundary mis-

alignment |βout −βin|, we can explore the linear regime,

nonlinear regime, and the onset of breaking, while hav-

ing good control over the warp amplitude. As we will

show, our simulations show excellent agreement with the

theories.

The rest of this paper is organized as fellows. In Sec-

tion 2, we discuss the theories of warped in disks in both

linear and nonlinear regime. We perform hydrodynamic

simulation for disks in linear, nonlinear and breaking

regimes in Sections 3 to 5, respectively. Finally, we con-

clude in Section 6.

2. LINEAR THEORY

2.1. Equations of Motion

We focus on a disk with a steady warp. We imagine

that the disk is forced to have unequal inclinations at

its inner and outer boundaries, and study the resulting

inclination profile in between. As discussed above, the

timescale for the disk’s inclination to reach its steady

profile is much shorter than the disk’s viscous time, and

so we regard the surface density profile as a given time-

independent function of radius.

The equations for the inclination have been derived

many times (Pringle 1992; Ogilvie 1999; Fairbairn 2025,

etc). We derive them again in Appendix A, because

our assumption of a steady warp facilitates a conceptu-

ally simpler derivation, and allows us to proceed from

first principles. Our derivation also makes clear that

the resulting steady equations are equally valid whether

α < h or α > h, i.e., in the “wave-like” or “diffusive”



Steady Warps: Linear, Nonlinear, and Breaking 3

regimes. Here we summarize the derivation, highlighting

the physical interpretation.

We adopt cylindrical coordinates (R,ϕ, z), a globally

isothermal equation of state, and an α viscosity. We

first solve for an unperturbed disk that is axisymmet-

ric and aligned with the z axis. We then perturb the

equations of motion to linear order, and assume that

perturbed variables take on an m = 1 dependence in

ϕ, and that their dependence on z is the leading term

in a Hermite expansion. Higher-order Hermite terms,

which have smaller vertical wavelengths, are suppressed

by powers of the disk aspect ratio

h ≡ H

R
(1)

where H is the scale height. The perturbed radial and

vertical velocities are then expressed as

v′R
ΩR

= UR
z

H
e−iϕ, (2)

v′z
ΩR

= Uze
−iϕ (3)

where the coefficients UR and Uz are functions only of

R, Ω(R) is the unperturbed angular frequency (Equa-

tion A12), which for a globally isothermal disk is inde-

pendent of z. Analogous expressions apply for v′ϕ and

the perturbed density (Equations A22 and A24). The

resulting equations are reduced to two coupled equations

for UR and Uz (Equations A30 and A31). For reasons

to be discussed shortly, we change dependent variables

to

W ≡ −iUz (4)

Ur ≡ UR + hUz. (5)

The resulting linear equations of motion are then

d

dR

(
ΣHR3Ω2Ur

)
= 0, (6)

(2α+ iϵ)Ur = H
dW

dR
, (7)

where Σ is the imposed surface density, and ϵ quantifies

the deviation of the epicyclic frequency from its Kep-

lerian value. The expression for ϵ is given by Equa-

tion A13; it is typically small (O(h2)), but can be-

come big if dΣ/dR is big. Rayleigh stability necessitates

ϵ > −1.

The variables W and Ur have clear physical interpre-

tations. The former is the complex inclination. In other

words, the disk’s unit normal l̂ is, in Cartesian [x, y, z]

components

l̂ ≈ [Re(W ), Im(W ), 1] (8)

to linear order in W .1 Figure 1 (left panel) depicts the

midplane of a warped disk with purely real W , meaning

that it is not twisted. In this case, the maximum height

at each radius lies at y = 0, as depicted by the dashed

red line, which is repeated in the top right panel. The

lower-right panels show theW profile, which in this case

of real W is the usual (real-valued) inclination, and its

warp ψ. For general complex W , the complex-valued

warp is defined as

ψ ≡ dW

d lnR
. (9)

In the figure, the warp is concentrated around R ∼ 1.5.

At much smaller or bigger R, the disk is unwarped,

meaning that the disk tends to a flat plate, in which

the inclination W is constant, and the maximum z is

proportional to x.

The variable Ur quantifies sloshing motions that are

in the “disk-horizontal” direction, i.e., perpendicular to

l̂. As shown in Appendix A.3, the radial speed in the

(spherical) r̂ direction is

v′r
ΩR

= Ur
z

H
e−iϕ

′
, (10)

(after dropping O(h2) corrections) i.e., it has amplitude

Ur. The dependence on z in Equation (10) indicates

sloshing, in that the nearly-horizontal motion has an

antisymmetric profile in z.2 The sloshing is closely re-

lated to the torque (Lubow & Ogilvie 2000). We define

the torque G as the angular momentum flux through a

spherical shell. We show there that to linear order in

W , and to leading order in h2, one finds

G ≈ −1

2
ΣHR3Ω2 [Re(Ur), Im(Ur), 0] . (11)

We turn now to the interpretation of the two linear

equations. Equation (6) states that the torque is inde-

pendent of R. as may be seen by comparing with Equa-

tion (11). This must be true for a steady disk, as torque

is the flux of angular momentum, and so if it varied with

R it would necessitate time dependence. We note that

1 In what follows, we shall define l̂ more precisely as the unit vector
that is in the direction of the angular momentum of a spherical
shell. See Equation (yyy) in the Appendix yyy for the full defini-

tion. We also show in that appendix that the resulting l̂ is given
by Equation (8), to linear order in W , after dropping O(h2) cor-
rections. [Need to make sure this is true].

2 The reason v′r rather than v′R is relevant for sloshing may be
appreciated by considering an unwarped disk (a flat plate) that
is inclined relative to the z = 0 plane. In that case, v′r = 0 as it
is for an uninclined plate. But v′R ̸= 0 because inclining the disk
introduces velocities in the R-direction that have the same z and
ϕ-dependence as Equation (2).
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Figure 1. Midplane of a Warped Disk. This disk has no twist (W is purely real). Left: 3D diagram of the disk. The red
dashed curve marks the maximum |z| at each R, which lies along y = 0 for this untwisted disk. Right Top: Same as red-dashed
curve in left panel. Right Bottom: Inclination and warp.

there is also a viscous contribution to the torque, but

we drop it because it is subdominant (Appendix A.4).

Equation (7) states that the warp ψ = dW/d lnR

drives sloshing. The dynamics may be appreciated by

considering two neighboring circular rings in the mid-

plane of a warped disk. Since their normals l̂ differ,

from the perspective of one ring its neighbor moves up

and down. That causes a disk-horizontal pressure gra-

dient, which in turn forces the sloshing (see, e.g., dis-

cussion in Ogilvie & Latter 2013a, and their Figure 5).

Equation (7) shows that for a given warp, the sloshing

is ∝ 1/(2α + iϵ), which is almost always very large in

magnitude. The reason for this extreme reaction is that

the vertical motions that accompany the warp are nearly

resonant with free sloshing (epicyclic-type) motions in a

nearly Keplerian disk (e.g., Papaloizou & Pringle 1983;

Ogilvie 1999).

As discussed below, the linear equations break down

when the warp is sufficiently big, |ψ| ≳
√
α (ignoring ϵ).

When that happens, the sloshing equation (Equation

(7)) changes. We shall show that much—but not all—

of the change is captured by the local nonlinear model

of Ogilvie & Latter (2013a).

2.2. Solution of the Linear Equations

We re-express the linear equations in terms of the com-

plex torque

G ≡ Gx + iGy ≈ −1

2
ΣHR3Ω2Ur, (12)

in which case the equations are

dG

dR
= 0, (13)

(4α+ 2iϵ)G = −ΣH2R3Ω2 dW

dR
. (14)

The first equation has solution G = const. The second

can then be integrated for theW (R) profile. The bound-

ary conditions are subtler. If the disk is not subject to

external forcing, then G = 0 at the boundaries, and the

steady solution is trivial, W = const, i.e., the disk is a

flat plate, with constant inclination. On the other hand,

an external perturber such as a planet or the outer disk

can apply a torque, forcing G. The details depend on

the perturber. But since we are interested in the disk’s

inclination profile rather than its interaction with a per-

turber, we adopt an equivalent, but conceptually slightly

different, approach: we fix the inner and outer inclina-

tions, and solve for W (R) in between. Equation (14)

gives

R
dW

dR
= const

2α+ iϵ

ΣR2
(15)

after adopting our globally isothermal assumption

(HΩ =const). The right-hand side is a known function

of R. Without loss of generality, we chooseW = 0 at the

inner boundary, and W to be purely real at the outer.

Equation (14) is then integrated, with the constant in

the equation adjusted to match the outer inclination.

That adjustment is trivial for the linear problem.

Equation (15) shows that the warp is largest where

ΣR2 is smallest (ignoring ϵ for now). Intuitively, a
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smaller Σ means that the disk is weaker, and the disk

bends primarily where it is weakest. Figure 2 shows

some solutions of the linear equations with three differ-

ent assumed Σ profiles, which are shown in the top-left

panel. We choose our domain to be

0.5 < R < 3 (16)

and set

α = 0.019, (17)

h = 0.02×R1/2, (18)

where the latter is needed to obtain ϵ. The green Σ

profile is a power law, Σ ∝ R−3/2. The resulting W and

ψ are shown in the right panels. For this case, the warp

|ψ| is dominated at the inner boundary. More generally,

for a power-law profile of Σ the warp is dominated at a

boundary.

For the other two Σ profiles, we impose gaps of depth

0.2 and 0.05. As a result, the warp is concentrated in

the gap, as may be seen in the right panels. For our

later comparisons, it will prove convenient to keep the

warp away from the domain boundaries, so that it is not

affected by uncertain boundary conditions. We will do

that by imposing a gap. But imposing a gap introduces

a small complication: ϵ can get large at gap edges, as

shown in the lower-left panel. Nonetheless, as long as

|ϵ/α| ≪ 1, as is true within most of the gap for the

profiles shown, the effect of ϵ may be ignored there.

3. SIMULATIONS IN THE LINEAR REGIME

3.1. Setup

We perform 3D hydrodynamics simulations of warped

disks using Athena++ (Stone et al. 2020) to study the

behavior of disks at different warp amplitudes. The sim-

ulations solve the Navier-Stokes equations for a globally

isothermal viscous disk in spherical polar coordinates

(r, θ, ϕ). We perform 8 main simulations, which have

parameters listed in Table 1. The radial domain spans

from rin = 0.5 to rout = 3. The polar domain covers

a range of θ with θ = π/2 being the latitude of zero

inclination. The azimuthal angle ϕ covers the full 2π

range.

We take the thick black case in Figure 2 as our fiducial

disk mode (i.e., Σ ∝ r−3/2 and gap depth 1/19). The

disk is given an initial warp structure so that its orbital

tilt, i.e., the direction of its orbital angular momentum

vector, follows

l̂ = [sin (β) cos (γ), sin (β) sin (γ), cos (β)] , (19)

where β = arccos (l̂ · ẑ) is the orbital inclination β and

γ = arctan2(l̂ · x̂, l̂ · ŷ) is the nodal angle.

We adopt a special radial boundary condition to hold

the disk inclination to be zero at rin and βout at rout.

These steady and non-coplanar boundaries force the

disk to accommodate a finite warp to bridge its inner

and outer parts, while also allowing the disk to evolve

into a long-lived steady structure. In this way, we can

directly study the general hydrodynamic behaviors of

warped disks and avoid introducing scenario-dependent

complexities. We use βout = 0.033 to test the lin-

ear theory. In later Sections we will also experiment

with βout ∈ {0.1, 0.15, 0.2, 0.3, 0.4} to cover the nonlin-

ear regime.

Table 1 lists the simulations that we show in this pa-

per. See Appendix C.1 for the details of the bound-

ary implementation, Appendix C.2 for the details of

the initial conditions, and Appendix C.3 for the time-

integration scheme.

Table 1. Simulation parameters used in this study. The
upper table lists parameter values that are common to all
runs: the isothermal sound speed cs, the viscosity parameter
α at the center of the density gap (r = 1.5), and the radial
coverage of the computational domain. The lower table sum-
marizes the run-specific parameters: the disk inclination at
the outer boundary βout (radiant), the form of the α profile,
the domain coverage in the θ direction, and the grid point
numbers.

Parameter sound speed cs viscous α r-domain

Values 0.02 0.019 (0.5, 3.0)

Name βout α(r) θ-domain (Nr, Nθ, Nϕ)

C03 0.033 constant (1.33, 1.81) (256, 256, 260)

V03 0.033 variable (1.33, 1.81) (256, 256, 260)

C10 0.10 constant (0.83, 2.31) (256, 728, 260)

C15 0.15 constant (0.83, 2.31) (256, 728, 260)

C20 0.20 constant (0.83, 2.31) (256, 728, 260)

C30 0.30 constant (0.83, 2.31) (256, 728, 260)

C40 0.40 constant (0.83, 2.31) (256, 728, 260)

3.2. Warp Structure

We begin with examining disks with βout = 0.033

(= 1.9◦), for which the warp is expected to be in the

linear regime. We simulate two setups (C03 and V03 in

Table 1): one with constant α = 0.019 throughout the

disk, and a non-fiducial one with a radially varying α.

The radially varying α is to prevent the viscous filling

of the initial density gap, so we set the variable α(r) by

letting αΣr3/2 be initially constant of r while keeping

α = 0.0189 at r = 1.5.

Figure 3 shows several diagnostics of the disk struc-

ture for both cases. The top panel shows the real-time
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Figure 2. Examples of steady-state warp structures for disks with different background profiles. Upper left: Background
surface density profiles of Σ. All disks are based on a power-law density Σ ∝ R−3/2, but applied with different density gaps
(with gap edges marked with vertical dotted lines). Lower left: Background ϵ profiles calculated based on Σ; all disks adopts
α = 0.19, with the gray-shaded region shows where |ϵ| < α. Top Right: Steady-state |W | profiles calculated from the linear
steady-state Equations (6) and (7); we normalized the results to |W | = 1 at the R = 3R0. Middle Right: Phase angle of the
steady-state complex W . Bottom Right: Warp amplitude |ψ| based on the |W | profiles. We take the thick black case as our
fiducial model.

disk surface density profile. For the variable-α case (left

column), the density profile remains nearly unchanged

in time, preserving the initial gap structure. In the

constant-α case (right column), the surface density pro-

file gradually evolves, slowly filling in the initial density

gap. Eventually, the disk will reach a viscous steady

state on the viscous timescale, for which the surface den-

sity is a power-law function of r.

The bottom three panels of Figure 3 show the incli-

nation profile β, nodal angle γ, and the warp ampli-

tude |ψ|. The disks are given initial inclination profiles
β(r) = βout(r − 0.5)/2.5 and γ = 0. In the variable-α

case, the β and |ψ| profiles evolve into a long-term steady

state, as shown by the orange curve at t = 1256 and the

green curve at t = 2550. The phase angle γ is small and

non-uniform in all snapshots, suggesting that the disk

is weakly twisted. This steady warp structure approx-

imately matches the linear-theory prediction shown by

the gray curves, which is calculated from the (initially)

background profiles.

For the constant-α case, the surface density is evolving

over time. However, there still exists a warp steady state

for each instantaneous density profile. The left column

of Figure 3 shows that the simulated β and |ψ| profiles
(solid curves) are in excellent agreement with the real-

time linear predictions (shown as light-colored curves),

while the γ profile generally agrees, indicating that the

disk can reach a warp steady state on a timescale much

short than the viscous evolution timescale of the surface

density. As the background slowly changes, the warp

co-evolves adiabatically. This result predicts that astro-

physical disks with long viscous timescales should be in

their respective warp steady states.

Measurement details: Here we briefly describe how

we measure the radial profiles of Σ, l̂, β, and ψ from our

hydrodynamic simulations:

Surface density—To describe the spatial structure of the

disk, we start with measuring the real-time disk surface

density profile as

Σ(r) =
r

2π

∫ 2π

0

∫ π

0

ρ sin θdθdϕ, (20)

where (r, θ, ϕ) are the spherical polar coordinates.

Tilt—The tilt profile can be calculated from a general

fluid field as l̂ = L/|L|, where

L(r) =
r2

2π

∫ 2π

0

∫ π

0

ρr × v sin θdθdϕ, (21)

where r and v are the local position and velocity vectors.

Warp amplitude—We also calculate

|ψ| =

∣∣∣∣∣ dl̂

d ln r

∣∣∣∣∣ (22)
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Figure 3. Evolution of a weakly warped disk with βout = 0.033 for variable (left, V03 in Table 1) and constant α profiles
(right, C03 in Table 1). The solid-colored curves show the real-time surface density Σ (top row, measured using Equation 20),
disk orbital inclination angle β, phase γ (two middle rows, Equation 19) and warp amplitude |ψ| (bottom row, Equations 22)
for both cases. In the left column, the faint-gray curves show the linear prediction |W | for the variable-α disk at t = 0. The
right column displays the linear theory prediction for the instantaneous steady-state solution |W | as faint-colored curves.

as the warp amplitude. Note that this definition is the

same as Equation 9 when β is small. It has also been

used in several previous works (e.g., Ogilvie 1999).

3.3. Sloshing and Torque

To further test the linear theory, we examine the ve-

locity and torque structure in the constant-α simulation

(C03) at t = 2461.7.

Figure 4 shows the gas density ρ and the non-

axisymmetric component of the radial velocity v′r at

r = 1.5R0. The left panels show the raw fields at in

the 2D (θ, ϕ) plane at r = 1.5, while the right panels

display the same data transformed into a rotated frame

where the disk midplane is placed at θ = π/2. 3

3 Specifically, we plot the fields of ρ(r′) and vr(r′) with r′ =
Ry(β)Rz(γ)r, where r is the position vector in the unrotated sim-
ulation frame and Ry and Rz are the rotational matrices around
the ŷ and ẑ axis.

The density field in the simulation frame shows its

midplane varying to different θ across the azimuth,

which is a result of the disk inclination; in the rotated

frame, the density field is almost axisymmetric (cf., Sec-

tion bouncing).

The radial velocity field shows a sinusoidal variation

in azimuth, which agrees with Equation (10). This pat-

tern illustrates what has been referred to as the sloshing

motion: as gas elements orbit around the star, they are

driven by the disk warps to oscillate radially.

The sloshing motion vr contributes to the radial trans-

portation of angular momentum across the disk. The

upper panel of Figure 5 shows the total radial flux of

the angular momentum G, measuredas

G(r) =
r2

2π

∫ 2π

0

∫ π

0

(r × v) vrρdθdϕ. (23)

The x̂ and ŷ components of the flux are mostly induced

by the warp; they are constant at all r as predicted by
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Figure 4. Density (top row) and velocity field (bottom row,
shown as v′r = vr − ⟨vr⟩ with ⟨vr⟩ being the shell average of
vr) at r = 1.5 for the constant-α simulation at t = 2461.7.
The left panels show the quantities in the simulation coordi-
nates, while the right panels show the same data transformed
into the local disk frame where the disk midplane is placed
at θ = π/2. The vertical dotted lines mark the ϕ angle where
Ur is pointing.

Figure 5. Internal torque G and the sloshing vector Ur

in the constant-α simulation with βout = 0.033 at t = 2461.7
(i.e., C03 in Table 1). The upper panel shows the x̂-ŷ-ẑ
components of G (Equation 23). The lower panel shows the
two components of Ur, Q2|ψ| and Q3|ψ|, with simulation
measurement as solid and linear predictions (Equations 26
and 27) as dotted lines.

Equations (6) and (13), except at near the outer bound-

ary. The ẑ component corresponds to background gas

accretion, which is subdominant in magnitude.

The relation between G and ψ can be best shown by

decomposing G into

G = −ΣH2Ω2r2
[
Q1l̂+U r

]
(24)

with

U r = Q2
∂ l̂

∂ ln r
+Q3

(
l̂× ∂ l̂

∂ ln r

)
, (25)

where U r is a vector characterizing the sloshing motion

of the disk, while Q1, Q2, and Q3 are dimensionless real

numbers. These two equations are the more generalized

form of Equation (11). Equations (7) predicts that

Q2 =
α

4α2 + ϵ2
, (26)

Q3 =
1

2

ϵ

4α2 + ϵ2
, (27)

in the linear regime. The lower panel of Figure 5 com-

pares the simulated Q2|ψ| and Q3|ψ| to their linear pre-

dictions, showing good agreement, especially inside the

gap.

Fluid elements performing sloshing are on weakly el-

liptical orbits. The vector U r is pointing at the phase

angle where the radial velocity vr is the maximum, i.e.,

the co-vertex (see Equation 10). Equation (25) implies

that the disk warps along the co-vertex when Q2 domi-

nates Q3 (α > |ϵ|), and along the apsis when Q3 domi-

nates (α < |ϵ|). We mark on Figure 4 the phase angle of

U r, which coincides with where |v′r| is the largest and

where the disk warps.

4. NONLINEAR REGIME

We also perform a suite of numerical simulations with

βout between 0.1 and 0.3 (5.7◦ to 17.2◦, C10 to C30 in

Table 1), for which the warp amplitudes are expected to

be in the nonlinear regime. From now on we will focus

on simulations with constant α, and we set up initial

disk profiles using their linear steady-state solutions.

Figure 6 shows the resulted warp structure profiles

from the simulations. As the disks reaches the WSS,

their β and |ψ| profiles both deviate from the linear-

theory prediction.

4.1. Saturation of Internal Torque

The reason that causes the breakdown of the linear

theory is the saturation of the disk’s internal torque G.

We define

|Q4ψ| =
1

ΣH2Ω2r2
|G⊥| (28)
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Figure 6. Surface density Σ, inclination profile β, and
warp amplitude |ψ| measured in moderately warped disks
with different βout (i.e., C10 to C30 in Table 1). The solid
lines are the measurement at t = 125.6. The faint gray line
in the top panel shows the initial density profiles.

as a dimensionless measure of the warp-induced torque

amplitude. In the linear theory, Q4ψ = (Q2 + iQ3)ψ

with Q2 and Q2 given by Equations (26) and (27). How-

ever, when the warp is strong, the disk may enter a non-

linear regime where Q4 also depends on |ψ|, limiting the

amplitude of G that the disk can attain.

This saturation process is seen in our nonlinear simu-

lations. Figure 8 shows the measured |Q4ψ| profiles at

t = 125.6 from the simulations, where we see that the

amplitude of |Q4ψ| changes with on βout nonlinearly.

The difference between the βout = 0.2 (green) and the

βout = 0.3 (red) cases is small, indicating a saturation

of the |Q4ψ|.
This nonlinear effect has been explored semi-

analytically by Ogilvie & Latter (2013a) using a local

shearing box model. Based on our real-time ψ profile,

we solve their Equations (74) to (78) to get a prediction

for the local fluid motions, and then use their Equa-

tion (92) to get a theoretical prediction for |Q4ψ|. The

results of the nonlinear predictions are displayed in Fig-

ure 8 as faint lines, which are in good agreement with

the simulation results.

Figure 9 shows the relation between |Q4ψ| and |ψ| in
these simulations at a few locations inside the density

gap. The open circles represent the measurement from

the initial condition of the disk; all of them lay on the

|Q4|-vs-|ψ| line predicted by the linear theory. The solid

squares show the simulated values at t = 125.6, which

all falls down to the nonlinear prediction curve.

4.2. Bouncing Effects

Figure 10 shows the density of the disks at r = 1.5.

Stronger bouncing features emerge as βout increases,

with the density structure showing more extreme ver-

tical compression and expansion along the azimuthal ϕ̂

direction. We measure the bouncing amplitude through

the local scale height H̃ of a disk, which is calculated as

the standard deviation of the vertical density distribu-

tion, i.e.,

H̃(r, ϕ) =

[
1

Σ

∫ π

0

ρ (θmid − θ)
2
r3dθ

]1/2
, (29)

where θmid is the polar angle of the disk midplane. The

measured maximum and minimum of H are shown in

the panel for each case. In the most extreme case with

βout = 0.3, the local scale height H̃ bounces between

0.011 and 0.097, while the unperturbed value is H =

0.037 at r = 1.5.

We use Equations (74) to (78) from Ogilvie & Latter

(2013a) to calculate a theoretical predictions for the az-

imuthal scale height fluctuations using α = 0.019, ϵ ≃ 0

and the simulated |ψ|. The predicted H̃ are overplotted

in Figure 10 as dotted lines, which match the simulation

results with remarkable accuracy.

4.3. Surface Density Evolution

The simulation result also shows different Σ evolution

for each different βout (see the top panel of Figure 6). To

quantify this difference, we measure the mass accretion

rate,

Ṁ(r) =

∫ 2π

0

∫ π

0

vrρ sin θdθdϕ, (30)

inside the density gap (i.e., for r between 1 and 2). The

results are shown in Figure 11.

We see that the accretion rate Ṁ is larger in disks

with stronger warp, which is not a surprising result. As

we have shown, warp can enhance angular momentum

transport across the disk, so the disk density may need

to redistribute accordingly by the conservation of total

angular momentum. Based on the mass and angular

momentum conservation, the predicted accretion rate

Ṁ of a warped disk is given by (Ogilvie 1999)

Ṁ =
4π

rΩ

∂

∂r

(
Q1ΣH

2r2Ω2
)
− 4πQ2ΣH

2Ω |ψ|2 , (31)
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Figure 7. Snapshots of the volume density ρ at t = 125.6 for simulations in the nonlinear regime. Top and bottom row shows
the cross section at θ = π/2 and ϕ = 0, respective. From left to right, the columns are from simulations with higher βout values.

Figure 8. Radial profile of |Q4ψ| in simulations with con-
stant α and different βout (i.e., C10 to C30 in Table 1). The
solid lines are the measurement at t = 125.6, while the faint
lines are predictions based on Ogilvie & Latter (2013a)’s
model, using mesured ψ and ϵ.

where

Q1 = − 1

ΣH2Ω2r2
G · l̂ (32)

is a dimensionless coefficient that quantifies the l̂ com-

ponent of G.

The analytical values of Q1 can be calculated from

Equation (91) of Ogilvie & Latter (2013a). We use their

model to calculate the analytical prediction of Q1 and

Q2 using the real-time local values of |ψ|, and then we

plug them into Equation (31) with the measured disk

profiles to get a semi-analytical prediction for Ṁ . The

predicted values of Ṁ for a range of r are shown in Fig-

Figure 9. Relation between |Q4ψ| and |ψ| in the nonlinear
regime. The black line shows the prediction for α = 0.0189
and ϵ = 0 based on the shearing-box model in Ogilvie & Lat-
ter (2013a). The faint gray line represents the linear-theory
relation. The scattered points show the values for |Q4ψ| and
|ψ| measured from the simulations. Each color represents
one simulation with a different βout, while the dots with the
same color correspond to the results measured at r = 1.3,
1.4, 1.5, and 1.6. The open circles and the solid squares
shows the measurement at t = 0 and 125.8, respectively.

ure 11 as scattered boxes4, which are in good agreement

with the measured Ṁ .

5. DISK BREAKING

4 We assume ϵ = 0 when calculate Q1 and Q2, so we only show
the predicted Ṁ at r far away of the gas edges.
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Figure 10. Simulated gas density distribution at r = 1.5
in four moderately warped disks at t = 125.6. The θ coordi-
nates have been shift to place the disk midplane at the center
of the vertical axis. The solid write lines trace the disk scale
height measured using Equation (29), while the dotted lines
are the predictions based on Ogilvie & Latter (2013a).

As we have seen in the previous section, large warp

amplitude can leads to several nonlinear effects, includ-

ing torque saturation, bouncing, and modified mass ac-

cretion flow. A natural question now is what happens

if the warp increases even further? To explore this, we

perform an additional simulations with a larger outer

inclination angle βout = 0.4 (i.e., 23◦, C40 in Table 1).

5.1. Fiducial Simulation

Figure 12 shows snapshots of the density field from

the simulation; the top and bottom rows show the den-

Figure 11. Mass flux Ṁ at the t = 125.6. The colored
curves show measurements from the simulations using Equa-
tion (30), from r = 1 to 2. The scattered boxes represent the
predictions based on the Equation (31), where we calculated
Q1 using the shearing-box model in Ogilvie & Latter (2013a)
with the real-time local values of |ψ|, α = 0.019, ϵ ≃ 0. The
faint gray curve corresponds to the theoretical accretion rate
if we assume the disk is flat.

sity distribution in the cross sections at θ = π/2 and

ϕ = 0. The disk begins as a continuous warp (t = 0),

similar to those in the earlier sections, except for the

larger warp amplitude. As the system evolves (t ∼ 62.8

to ∼ 125.6), however, the inner and outer disk regions

gradually detach, forming two disconnected planes sepa-

rated by a narrow density gap at r ≃ 1.5R0. After falling

apart, the two disk portions quickly flatten themselves

(t ∼ 188.4), with the inner and our disks eventually

aligned to βin = 0 and βout = 0.4, respectively.

Figure 13 illustrates the time evolution of the den-

sity, inclination, and warp amplitude profiles during

the breaking process. The inclination profile β grad-
ually steepen, eventually producing a sharp jump at the

breaking point r ≃ 1.5R0. The warp ψ initially spread

nearly uniformly between r = 1 and r = 2; during the

evolution, ψ becomes extremely localized, with the max-

imum |ψ| increasing from ∼ 0.5 at early times to as high

as ∼ 8 in the final snapshot. While the old density gap

is filling up at r ∼ 1 and ∼ 2, a new sharp density gap

gradually depletes at the breaking radius, where Σ de-

creases by a factor of ten, suggesting that mass flux is

significantly enhanced by the strong warp.

We refer to this outcome, where the inner and outer

disks detach in terms of β and the surface density de-

pletes at the detaching point, as disk breaking. This

breaking process is spontaneous: there is no explicit ex-

ternal forces tearing the disk, and the gravitational po-
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Figure 12. Snapshots of the density field ρ from the ‘breaking’ simulation with βout = 0.40 = 23◦ (i.e., C40 in Table 1). Top
and bottom row shows the cross section at θ = π/2 and ϕ = 0, respective. The columns represents the time evolution from an
initially connected disk (t = 0.0) to an eventually broken configuration (t = 188.4).

Figure 13. Surface density Σ, inclination profiles β, and
warp amplitude |ψ| measured in the simulaion with βout =
0.4 (i.e., C40 in Table 1). The black and orange lines are
at t = 0 and t = 339.1, respectively. The faint gray curves
shows the time evolution of the profiles at every ∆t = 6.28.

tential is Keplerian. Hence, the breaking arises purely

from internal hydrodynamics of the disk.

5.2. 1D Model for Disk Breaking

5.2.1. Breaking Mechanisms

What leads the disk to break is the runaway growth of

|ψ|. To understand that, we consider a set of toy-model

time-evolution equations,

ΣR2Ω
∂W

∂t
= − 1

R

∂G

∂R
, (33)

∂G

∂t
+ αΩG = −αΣH2Ω3R2Q4ψ, (34)

where the first equation the conservation of angular mo-

mentum, the second is a nonlinear time-dependence ver-

sion of Equation (7) (see Dullemond et al. 2022), and we

have set ϵ = 0 and assumed Q4 is mostly real for sim-

plicity.

Theories in previous Sections have been focused on the

steady-state solution of Equations (33) and (34) with

G = −ΣH2Ω2R2Q4ψ = const. However, this solution is

unstable against small perturbations when ∂ψ (Q4ψ) <

0. We may performing a local stability analysis by as-

suming G = G0 + δG and ψ = ψ0 + δψ, where G0 and

ψ0 are steady-state solutions and δG, δψ ∝ eγt+ikR are

small perturbations. Equations (33) and (34) suggest

γδG+ αΩδG = −ΣH2Ω3R∂ψ (Q4ψ) δψ,

ΣR2Ωγδψ = k2δG,

in the limit of large k. Solving for the growth rate γ

shows that γ > 0 if ∂ψ(Q4ψ) < 0. As similar result can

be found in Doǧan et al. (2018).

This instability conditions means, if a local increase

in |ψ| reduces the restoring torque, the warp would fur-

ther amplify through a runaway growth. Consequently,

the warp dominates at a particular radius rbreak, around
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which the inner and outer disk parts are fully misaligned.

The resulting large |ψ| at rbreak would also enhance the

local Ṁ (see Equations 31), leading to a density deple-

tion that disconnects the disk at the point of misalign-

ment.

5.3. Analysis

The shearing-box model from Ogilvie & Latter

(2013a) suggest that the critical warp amplitude for

∂ψ(Q4ψ) < 0 is about |ψ|crit = 0.3. Using the linear

solution an estimate (see, e.g., the bottom right panel of

Figure 2), our simulation with βout = 0.4 (C40) would

have stead-state |ψ| ≈ 0.5 and it indeed breaks. Our

simulations with βout ≤ 0.2 (C20) would have stead-

state |ψ| ≈ 0.25 and they do not break. These cases are

consist with the implication of Ogilvie & Latter (2013a).

However, our simulation with βout = 0.3 is an excep-

tion to the simple breaking theory above. As indicated

by the red squares in Figure 9, the simulated warp am-

plitudes are already above than the critical |ψ|crit for

∂ψ(Q4ψ) < 0. Yet the disk does not break.

There are a few possible explanation to why this disk

does not break. One example is that the instability is

suppressed by shock. In a strongly warped (but not

yet broken) disk, gas compresses and expands two times

per orbit. At sufficiently large amplitude, these com-

pression become supersonically and can produce shocks

that damp the warp (Held & Ogilvie 2024; Kaaz et al.

2025), an effect that is not captured in our breaking the-

ory. The disk with βout = 0.3 in our simulation may be a

case when this damping is sufficient to offset the break-

ing process. Figure 9 shows that the steady state of this

disk has ∂ψ|Q4ψ| marginally less than zero, so it is pos-

sible that the instability is not enough to overcome the

dissipation. This shock damping might also contribute

to the small discrepancy in two H̃ curves shown in the

bottom panel of Figure 10.

Figure 13 shows that, for the disk with βout = 0.4, the

breaking radius is slowly moving outward. The rate of

this outward drift appears faster in low-resolution runs.

This trend suggests that the migration of the break-

ing radius at least partially controlled by resolution. A

follow-up study may be needed to determine whether

this drift is physical or purely numerical.

6. CONCLUSION

In this work, we have carried out a systematic inves-

tigation of warp steady states (WSS) in accretion disks,

spanning the linear, nonlinear, and breaking regimes.

Our study combines linear analytic theory, local nonlin-

ear models, and global three-dimensional hydrodynamic

simulations. Rather than including an explicit perturber

or external torque, we fix the disk inclination angles βin
and βout at the inner and outer boundaries. This setup

provides a clean framework for diagnosing how the hy-

drodynamics of how disks bend, sustain coherent warps,

and eventually break, while remaining agnostic about

the origin of the warp.

For weakly warped disks, our simulations with βout =

0.033 confirm the linear theory. We see disks rapidly re-

laxing to their respective WSS; their simulated warping

and inclination profiles, sloshing velocity fields and in-

ternal torque fluxes show excellent agreement with the

theoretic predictions. Importantly, the predictions re-

main accurate for real-time steady-state warp profiles

even as the background density slowly evolves, implying

that protoplanetary disks should stay in quasi-steady

warped states on timescales much shorter than their vis-

cous evolution.

As we increase βout to inject stronger warps, disks

enter the nonlinear regime where several new features

emerge. First, the internal torque no longer grows lin-

early with |ψ|, but instead it saturates. Second, the gas

exhibits strong “bouncing” motions, undergoing cycles

of vertical compression and expansion twice per orbital

period; this effect leads to large azimuthal fluctuations

in the local disk scale height. Third, large warp |ψ|
also enhance the mass accretion flows. All three ef-

fects are clearly measured in our simulations and are

in good quantitative agreement with the nonlinear pre-

dictions (Ogilvie 1999; Ogilvie & Latter 2013a).

When the warp amplitude is increased further, non-

linear disks become unstable and may break. We show

in our βout = 0.4 simulation that a strongly warped disk

may undergo a runaway instability: the warp amplitude

|ψ| rapidly grows and localizes, and the disk eventually

break into two misaligned pieces separated by a density

gap. This breaking process occurs spontaneously from

internal hydrodynamics, without requiring explicit ex-

ternal forcing. Our analysis suggest that this instability

happens when the large warp causes the torque to fully

saturate so that ∂ψ(Q4ψ) < 0; under this condition, lo-

cal increases in |ψ| reduce the restoring torque, rather

than enhancing it. The critical warp amplitude for in-

stability is given by |ψ|crit ≃ 2
√
α for Keplerian disks.

Overall, our work present a comprehensive picture

of the hydrodynamics of warped disks, illustrating how

disks may bend, sustain coherent warps, or break. One

important topic for future studies is explore the long-

term behavior of broken disks. Some previous simula-

tions have shown examples where disks can heal from

breaking and reconnect into whole pieces (e.g., Deng &

Ogilvie 2022), but the exact mechanism is not fully un-

derstood. Future work may extend our results by incor-
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porating additional physics, such as magnetic fields, tur-

bulence, and gas self-gravity. Explicit perturbers may

also be added to further connect our results to more

specific astrophysical scenarios. One may also model

the observational signatures of the nonlinear behaviors,

such as bouncing and enhanced accretion, which may

used for future detections of disk warping.
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APPENDIX

A. DERIVATION OF THE LINEAR THEORY

Here we derive the linearized equations of motion for a warp in a globally isothermal protoplanetary disk. The disk

is governed by the momentum and continuity equations,

(∂t + vtot ·∇)vtot = −∇Φ− c2s∇λtot, (A1)

(∂t + vtot ·∇)λtot = −∇ · vtot, (A2)

where the subscript “tot” denotes the total value (background + perturbation), vtot is the velocity vector,

λtot = ln ρtot (A3)

is the logarithm of the density, cs is the globally constant sound speed, and Φ is the gravitational potential of the

central star. We temporarily ignore viscosity.

We shall decompose

λtot=λ+ λ′ (A4)

vtot=v + v′ (A5)

where unsubscripted λ and v denote the background, and primed quantities denote the perturbation.

A.1. Background

The background is taken to be axisymmetric and aligned with the vertical axis. In cylindrical coordinates (R,ϕ, z),

v = (vR, vϕ, vz) = (0, RΩ, 0). The angular frequency Ω(R, z) and λ(R, z) are related by

RΩ2 = c2s∂Rλ+ ∂RΦ, (A6)

0 = c2s∂zλ+ ∂zΦ (A7)

based on Equation (A1).

Taking ∂z(A6) - ∂R(A7) gives ∂zΩ = 0. Hence, Ω can be determined by evaluating Equation (A6) at the midplane,

which yields

Ω2 = Ω2
K +

c2s
R
∂Rλmid (A8)

where ΩK = ΩK(R) is the Keplerian frequency and λmid = λ|z=0.
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Taking z×(A6) - R×(A7) leads to

∂zλ = − z

H2
+
z

R
∂Rλ, (A9)

where

H = cs/Ω . (A10)

Near the midplane of the disk, the first term on the right-hand side is dominant over the second as H2 ≪ R2, so

ρ ∝ exp
{
−z2/(2H2)

}
. Therefore, the background volume density of the disk has the form

ρ(R, z) =
Σ√
2πH

exp

{
− z2

2H2

}
, (A11)

where Σ(R) is the radial profile of the disk surface density, which can be chosen freely.

In terms of Σ, Equation (A8) becomes

Ω2 = Ω2
K +

c2s
R
∂R ln

(
Σ

H

)
. (A12)

We shall also need the epicyclic frequency,

κ2 ≡ R−3∂R(R
4Ω2) (A13)

and its deviation from Ω via

ϵ≡ κ2

Ω2
− 1 (A14)

=R∂R ln(Ω2R3) (A15)

≈R∂R
(
H2

R2
R∂R ln

Σ

H

)
(A16)

where the final expression is to leading order in H2/R2 when dR(lnΣ) is order unity.

A.2. Perturbation Equations

Linearizing Equations (A1) and (A2) yields

∂tv
′
R =− Ω∂ϕv

′
R + 2Ωv′ϕ − c2s∂Rλ

′, (A17)

∂tv
′
ϕ =− Ω∂ϕv

′
ϕ − (2 +R∂R lnΩ)Ωv′R − c2s

R
∂ϕλ

′, (A18)

∂tv
′
z =− Ω∂ϕv

′
z − c2s∂zλ

′, (A19)

∂tλ
′ =− Ω∂ϕλ

′ − 1

R
∂R (Rv′R)− (∂Rλ) v

′
R − 1

R
∂ϕv

′
ϕ − (∂zλ) v

′
z − ∂zv

′
z, (A20)

Following Tanaka et al. (2002) and Ogilvie (2008), we take the azimuthal dependency of linearized variables to be

∝ e−iϕ, as is appropriate for a warp, and we decompose the vertical dependency in Hermite polynomials. We further

simplify by restricting the Hermite expansion to the leading-order contributions, which results in setting

v′R
ΩR

= UR
z

H
e−iϕ, (A21)

v′ϕ
ΩR

= Uϕ
z

H
e−iϕ, (A22)

v′z
ΩR

= Uze
−iϕ, (A23)

λ′ = Λ
z

H
e−iϕ, (A24)
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where UR, Uϕ, Uz, and Λ are complex coefficients that depend on R and t. Plugging these into Equations (A17)

to (A20) gives the evolution equations

Ω−1∂tUR = iUR + 2Uϕ + h2R(∂R lnH)Λ− h2R∂RΛ, (A25)

Ω−1∂tUϕ = iUϕ − (2 +R∂R lnΩ)UR + ih2Λ, (A26)

Ω−1∂tUz = iUz − hΛ, (A27)

Ω−1∂tΛ = iΛ−R∂R ln
(
ΩΣHR2

)
UR −R∂RUR + iUϕ +

1

h
Uz − hR∂R ln

(
ΣH2

)
Uz, (A28)

where

h = H/R (A29)

is the aspect ratio. To derive Equation (A28), we use Equations (A9) and (A11) to calculate ∂zλ and ∂Rλ, respectively.

In addition, although the factors of z cancel from the first three equations, some of the terms in Equation (A28) have

coefficient z, and others have coefficient z3. Since we are really extracting the projection of this equation onto the

first Hermite polynomial, we replace those coefficients by their projections, which amounts to replacing z → H and

z3 → 3H3.

A.3. Steady-State Equations

Henceforth, we consider steady-state equations (∂t → 0). Equation (A27) gives Λ = iUz/h, which can be used

to eliminate Λ in other three equations. We then eliminate Uϕ by forming two different combinations of the three

equations: −i×(A25)+2×(A26) and −i×(A25)+(A26)+(A28). These combinations gives

0 =
d

dR

[
ΣHΩ2R3 (UR + hUz)

]
, (A30)

0 =
d ln

(
Ω2R3

)
dR

(UR + hUz) + h
d

dR
Uz, (A31)

which are two equations for two unknowns: UR + hUz and Uz. The former is related to the radial speed in the

(spherical) r̂ direction, v′r = (R/r)v′R + (z/r)v′z, which implies

v′r
ΩR

≈ (UR + hUz)
z

H
e−iϕ (A32)

after dropping the O(z2/r2) correction. We therefore define

Ur ≡ UR + hUz (A33)

which represents the amplitude of v′r. Equations (A30–A31) then become

0=
d

dR

(
ΣHΩ2R3Ur

)
, (A34)

0= ϵUr + hR
d

dR
Uz. (A35)

We will show in A.4 that viscosity contributes an extra −2iαUr term to the right-hand-side of Equation (A35).

Equations (6) and (7) then follow after defining

W ≡ −iUz (A36)

and including the viscous term.

A.4. Viscous Terms

Here, we derive the viscous term we added in the last step of the previous section. We take the viscous force per

unit mass to be

f tot =
1

RΩ2ρtot
∇ · (νρtotτ tot), (A37)
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where τ is the stress tensor and ν is the kinematic viscosity,

ν = αcsH, (A38)

with α being the viscosity parameter as in the Shakura & Sunyaev (1973) model. This f tot is to be added to the

right-hand side of Equation (A1).

We derive the perturbed f ′, which is to be inserted on the right-hand-side of the steady-state versions of Equations

(A17)–(A19) by first working in the zero-inclination frame, where v′z = 0. We shall then rotate to obtain the general

form. Anticipating that the vertical viscous force is small, Equation (A19) implies λ′ = 0. Then,

f ′ =
1

RΩ2ρ
∇ · (νρτ ′). (A39)

The most important terms in τ ′ are

τ ′Rz = τ ′zR = ∂zv
′
R, (A40)

τ ′ϕz = τ ′zϕ = ∂zv
′
ϕ, (A41)

as the main effect of viscosity is to act on the sloshing-induced vertical shear in the horizontal velocity components

(see also Papaloizou & Lin 1995). Hence,

f ′≃ 1

RΩ2ρ

∂

∂z

[
νρ
(
R̂∂zv

′
R + ϕ̂∂zv

′
ϕ

)]
(A42)

≃− αz

RΩ

[
(∂zv

′
R) R̂+

(
∂zv

′
ϕ

)
ϕ̂
]

(A43)

≃−αv
′
R

RΩ

[
R̂+

(
i

2

)
ϕ̂

]
, (A44)

where we keep leading order terms by assuming ∂R, ∂ϕ → O(1) and ∂z → O(1/h) (see also Papaloizou & Lin 1995),

and in the third equality we eliminate v′ϕ by using the dominant contribution from Equation (A17).

In order to rotate f ′, we simply replace v′R → v′r; other contributions to the rotation are higher order. The result

is that Equations (A25)–(A26) are to be modified by adding to their respective right-hand-sides −αUr and 1
2 iαUr.

Finally, when we carry through the manipulations described in Section A.3, the viscous force adds −2iαUr to the

right-hand side of Equation (A35). It also adds a term to Equation (A34), but one that is smaller than the other in

Equation (A34) term by O(α), and so we drop it. Our viscous term is the same as those in Papaloizou & Lin (1995)

and Lubow & Ogilvie (2000), except that their terms are proportional to UR.

B. FROM COMPLEX-NUMBER NOTATION TO 3D TILT AND SLOSHING VECTORS

The linear theory in the main text adopts complex-number notations. This Appendix shows how to translate the

complex linear quantities W and G into the real space vectors (tilt vector, etc).

B.1. Tilt Vector l̂.

The tilt vector is defined as l̂ = L/|L|, where L is the total orbital angular momentum vector. The total orbital

angular momentum at each disk radius is given by

L(R) =

∫ 2π

0

∫ +∞

−∞
r × vtotρtotRdzdϕ (B45)

=

∫ 2π

0

∫ +∞

−∞
(ρ+ ρ′)

(
RR̂+ zẑ

)
×
(
v′RR̂+ΩRϕ̂+ v′ϕϕ̂+ v′zẑ

)
Rdzdϕ (B46)

where we have expanded the total fluid quantities into the background and the perturbation as in Equation (A4) in

the second line. Adopting the perturbations given by Equations (A21) to (A24), we have

L = ΣΩR2 [Re(lxy), Im(lxy), 1] (B47)
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where

lxy =
1

2
(−iUz + ihUR − hUϕ − hΛ) = −iUz +

3i

4
hUr +O(h2Uz). (B48)

The second equality holds when the disk is in a steady state so that Λ = iUz/h and iUR − hUϕ = 3iUr/2 + O(hUz)

(based Equations A27, A25 and A33). By setting W = −iUz and the sloshing amplitude Ur with Equation (??), we

get

lxy =W +O
(
h2W

)
+O

(
h2

2α+ iϵ
ψ

)
, (B49)

where the last term is sub-dominate for small ψ and when h ≲ |2α + iϵ| (i.e., when the resonance condition is not

satisfied). Hence, we arrive at

l̂ = [Re(W ), Im(W ), 1] , (B50)

which is introduced in Section ?? of the main text.

A similar calculation can be done in the spherical polar coordinates (r, θ, ϕ) for each spherical r, and we expect the

spherical integral to give the same result when the aspect ratio h≪ 1 is small.

B.2. Torque and Sloshing

The angular momentum flux G is, at the leading order, given by

G =
1

2π

∫ 2π

0

∫ +∞

−∞
(r × v) v′rρRdzdϕ, (B51)

where the unprimed and primed quantities refer to the background and perturbations. The cross product can be

expressed as

r × v =x̂(yvz − zvy) + ŷ(zvx − xvz) + ẑ(xvy − yvx) (B52)

=RΩ [x̂(−z cosϕ) + ŷ(−z sinϕ) + ẑ(x cosϕ+ y sinϕ)] , (B53)

where we have dropped all vz terms in the second line because they would be multiplied by v′r and become second-order.

For the velocity perturbation v′r given by Equation (??), the flux is

G = −1

2
ΣHR3Ω2 [Re(Ur), Im(Ur), 0] . (B54)

Note that, in hydrodynamical simulation, the ẑ component can be nonzero because v′r may have axisymmetric (m = 0)

components.

Inserting Equation (??) and ψ = dW/d lnR into (B54) gives

1

ΣH2R2Ω2
G = −Q2

[
Re

(
dW

d lnR

)
, Im

(
dW

d lnR

)
, 0

]
−Q3

[
−Im

(
dW

d lnR

)
,Re

(
dW

d lnR

)
, 0

]
, (B55)

where the first and the second vectors in the right-hand side are equal to dl̂/d lnR and l̂ × dl̂/d lnR, respectively.

Hence, we have

Q2 = − 1

ΣH2Ω2R2
G · ∂ l̂

∂ lnR
, (B56)

Q3 = − 1

ΣH2Ω2R2
G ·

(
l̂× ∂ l̂

∂ lnR

)
, (B57)

as shown by the Equations (??) and (??) in the main text, except that we use r instead of R when we analyze the

hydrodynamic simulations.
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B.3. Apply Tilting

Our hydrodynamic simulations initialize the disks with some tilting structure,

l̂ = [sin (β) cos (γ), sin (β) sin (γ), cos (β)] . (B58)

For example, when we start the disk with linear steady-state warps, we let β = |W | and γ = Arg(W ).

To set up a disk with a desired l̂(r) profile, we first construct a disk that is originally flat with its midplane placed

at θ = π/2, and then we tilt it. For a flat disk, its density ρ and velocity v are given by the background equilibrium.

To tilt it, we rotate the fluid element at r = (r, θ, ϕ) to a new coordinate r′ = (r, θ′, ϕ′) so that

r′ = Rz(γ)Ry(β)r, (B59)

where Rz(γ) and Ry(β) are the standard 3D rotational matrices around the ẑ and ŷ axes, respectively. When we

calculate r′, we convert r into cartesian coordinate so that apply Rz(γ) and Ry(β) can be applied; the result r′ is

also in cartesian coordinates, based on which we get spherical-polar coordinates (r, θ′, ϕ′). As we rotate a fluid element

from r to r′, we change its velocity vector to

v′ = Rz(γ)Ry(β)v (B60)

and the preserve its density ρ.

When we analyze a simulation, we can reverse this tilting procedure using the real-time measured β and γ. This

allows us to map from the simulation coordinates rsim to the disk midplane coordiantes rdisk via

rdisk = Ry(−β)Rz(−γ)rsim. (B61)

This is how we obtain the disk-plane snapshots in the right panels of Figure 4 and in Figure 10.

C. DETAILS OF HYDRODYNAMIC SIMULATION SETUP

C.1. Grid and Boundary Conditions

Our simulations are preformed with Athena++ (Stone et al. 2020). We adopt spherical polar coordinates and

uniformly spaced grid cells in r, θ and ϕ for our simulations. The azimuthal angle ϕ ranges from 0 to 2π while the

radial r and polar θ coverages are given in Table 1. The ϕ domain is periodic; at each r and θ boundary of the domain,

two ghost cells are attached outside the active mesh to implement boundary conditions.

The θ boundaries are placed sufficiently far from the disk midplane (≥ 10H away from at r = R0, ≥ 5.5H at r =

1.5R0, and ≥ 2.5H at r = 3.5R0) to ensure they do not influence the disk evolution. We impose reflective conditions,

which are found to be the best for maintaining the vertical hydrostatic equilibrium of the disk and minimizing spurious

inflows or outflows. Specifically, we copy the values of density ρ, radial velocity vr, and azimuthal velocity vϕ from

the last active cells into the ghosts, while the polar velocity vθ is copied with its sign reversed. Similar boundary

conditions have been used in a number of previous studies (e.g., Zhu 2019; Kimmig & Dullemond 2024).

The radial boundary condition needs to achieve two goals: (i) keeping the disk at fixed tilts, and (ii) allowing the

sloshing motion to be consistent with the warp-steady-state condition. For (i), we hold the density values in the ghost

cells at their initial values, so that the midplane of the disk is fixed. For (ii), we follow Equation (6) to set

vr
rΩ

= Ur ∝
(
ΣHR3Ω2

)
= constant (C62)

at the boundary.

In the following, we describe the details of our radial boundary implementation. We denote quantities associated

with the first/last active cells with ′ and those associated with the ghost cells with ′′. The density values in the ghost

cells are held at their initial values, i.e.,

ρ′′ = ρ′′(t = 0). (C63)

The velocity values in ghost cells are set in three steps: (1) calculate the cylindrical velocity components (v′R, v
′
ϕ, v

′
z)

with ẑ pointing at the direction of the disk plane (defined by β = 0 and β = βout at the inner and outer boundaries,
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respectively); (2) calculate these components for the ghost cells as

v′′R = v′R

(
R′′

R′

)−1/2

, (C64)

v′′ϕ = v′ϕ

(
R′′

R′

)−1/2

, (C65)

v′′z = 0, (C66)

where the factor −1/2 is to keep Ur as a constant across the boundary based on Equation (C62); then (3) convert

them to the spherical-polar components (v′′r , v
′′
θ , v

′′
ϕ) and assign these values to the ghost cells. In short, this method

is to set the ghost cell velocity to v′′ =
[
v′ −

(
v′ · l̂

)
l̂
]
× (r′′/r′)−1/2, where l̂ is the target tilt at the boundary.

C.2. Initial Conditions

The initial disk is set in two steps: first setting up a disk in its flat background state, and then injecting a warp

structure by tilting the disk.

We use an initial background surface density profile

Σ(r) = Σ0

(
r

R0

)−3/2
1

fgap(r)
, (C67)

where

fgap(r) = 1 +
K − 1

2

[
tanh

(
r −Ra
∆a

)
− tanh

(
r −Rb
∆b

)]
(C68)

controls the shape of the gap. The parameters Ra and Rb are the locations of the inner and outer gap edges, ∆a and

∆b are the steepness of the edges, and the constant K determines the depth of the gap. We use parameter values

(Ra, Rb, ∆a, ∆b, K) = (R0, 2R0, 0.1R0, 0.2R0, 19) in all simulations. The background volume density is

ρ(r, θ) =
Σ(r)√
2πH

exp

(
−r

2 sin2 θ

2H2

)
. (C69)

To maintain this gap profile, we adopt a r-dependent α profile

α(r) =
α0

K
fgap(r), (C70)

which allows α = α0 inside the gap and α = α0/K outside. The background azimuthal angular velocity is set to

Ω2(r) = Ω2
K

(
1 +

c2s
r2Ω2

K

∂ ln ρmid

∂ ln r

)
, (C71)

to maintain radial force balance, while the initial radial and polar components are set to be zero.

The tilting step is then done by following the processes in Appendix B.3.

C.3. Time Evolution

Local-Lax-Friedrichs method (LLF) is adopted to solve the hydrodynamic equations in our simulations, where the

spatial reconstruction of the primitive fluid quantities is done using the piecewise Linear Method (PLM). We perform

time integrations using the second-order accurate Runge-Kutta/Heun’s method (RK2). All of the numerical methods

here are already implemented in public version of Athena++.
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