A simplified explanation of how
to get unstable spirals

The full derivation can be found in Section 3 and Appendix A-C of our paper.

Related theoretical discussion can also be found in Lin (2015; arXiv:1502.02662)
and Lee et al (2019; arXiv:1811.11/58)



https://ui.adsabs.harvard.edu/link_gateway/2015MNRAS.448.3806L/arxiv:1502.02662
https://ui.adsabs.harvard.edu/link_gateway/2019ApJ...872..184L/arxiv:1811.11758
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Disk with strong self-gravity traps spiral eccentric

modes

Basic equation of the disk eccentric mode:
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Disk with strong self-gravity traps spiral eccentric

modes

Basic equation of the disk eccentric mode:

. i8 1
U3 SWE = [iBZ'Jr T Magi + == Miso + Masg + M]E.

K=kr

Dispersion relation map (DRM) for eccentric modes:
* Derived from the disk eccentric mode equation.

g =%
* X-axis: r coordinate of the disk;
Y-axis: wave number k.
* Closed curves: wave frequency w(k, r) contours that represents
standing eccentric waves (which satisfy the quantum condition).
* Red/Bluecontours: trailing/leading spiral modes,

which only appears when self-gravity is strong.

2T ; .
—: larger g means stronger self-gravity against pressure.
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Fast disk cooling drives the growth of spiral eccentric modes

* Consider the disk as a collection of many eccentric rings.

* For aring of radius r, its eccentricity implies an angular momentum deficit (AMD):

£(r,e) = \/GM,r(1 — e?)
> AMD(r,E) = ZLg|E[22mr  for small |E| with L = ZQr2.

* To change the |E| of an eccentric mode is to change to the total AMD of all rings that form a disk:

Jm‘LKlEIzdr



Fast disk cooling drives the growth of spiral eccentric modes

We can derive the time evolution of the disk AMD using our basis equation of eccentric mode:

0E

5 dr + c.c.

d
aerLKIEIZdr = er3QKZE*

: 0E . : : .
where c. c. stands for the complex conjugate and Fri IwE for eccentric modes is determined by
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Fast disk cooling drives the growth of spiral eccentric modes

Which term in the mode equation can change the angular momentum (i.e., mode amplitude |E|)?

. iB 1
U3 SWE = [ﬁ*”adi + =7 Miso + Masg + Mp]E.

The four operators are :
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Fast disk cooling drives the growth of spiral eccentric modes

Which term in the mode equation can change the angular momentum (i.e., mode amplitude |E|)?

iB 1
Y Mt = Mot M MG B

2B = oo iB+1

The four operators are :
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The last matrix is always [ unless beta is not a
constant. Let us make our lives easier by assume it
is zero here.



Fast disk cooling drives the growth of spiral eccentric modes

Which term in the mode equation can change the angular momentum (i.e., mode amplitude |E|)?

. iB 1
230 SwE = [ﬁﬂ[adi + Mo + Magg +><]E

The four operators are :

r dr dr
d [ q.dF o dP d det . .
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Maeg B =—Yir— (1 —) El—- ZE(7‘Q¢1)- |_ Mutual gravity between the eccentric rings:
‘ Does not change the total AMD

Gravity from the axisymmetric
background: The self-gravity term does not cause

Does not change the local AMD mode instability



Fast disk cooling drives the growth of spiral eccentric modes

Which term in the mode equation can change the angular momentum (i.e., mode amplitude |E|)?

. i 1
23 SWE = [1,324 T Madi + o= Miso + X +)<]E.

The four operators are :

Axisymmetric pressure on the eccentric rings:
M, E = d <”r’"’3p—> } 2% B mmmm— (;ses the precession of the rings, but does not
dr dr change the AMD
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I The self-gravity term does not cause

Dispersive eccentricity propagation: mode mStablllty
Does not change the total AMD inside our
wave-trapping boundaries



Fast disk cooling drives the growth of spiral eccentric modes

. i 1
230 TWE = [ Mg + ——— M, x XE
rdiK [23+11 ad1+'l.},3+11 iso T D+l ]

The four operators are :

Axisymmetric pressure on the eccentric rings:
r |4 ([ 3pdE\|| 2dP ., | 4=, yses the precession of the rings, but does not
M. 4 E = vyr- P - F,
dr dr dr change the AMD
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Dispersive eccentricity propagation:
Does not change the total AMD inside our
wave-trapping boundaries



Fast disk cooling drives the growth of spiral eccentric modes

; i3 1
30 YwE = Y ] . — M.+ MK IRg | L.
I = e g gy X‘* +><]E

The four operators are :

d { 5, dE o dP As fluid material is perturbed, the
-"‘IadiE = — <"}'7’k P—> +r“—=n, . . N
dr dr dr background disk imposes its locally
d <,3 P@ ) 2 dP d (Edcm .3 E) | (— tem|?erature to the perturbation. It can
dr dr dr possibly lead to angular momentum
exchange between the mode and the
background.

M, E=

dr dr

This angular momentum exchange is also
derived in Lin & Papaloizou (2011,
arXiv:1103.5036)



https://ui.adsabs.harvard.edu/link_gateway/2011MNRAS.415.1445L/arxiv:1103.5036
https://ui.adsabs.harvard.edu/link_gateway/2011MNRAS.415.1445L/arxiv:1103.5036

Fast disk cooling drives the growth of spiral eccentric modes
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Assess the effect of the temperature gradient term to AMD:

d 2rLg |E|?dr < i E*a chsz 3E |dr +
dtf rLg|E|*dr lf Fm drr r+c.c.

For the elliptical modes (top and middle panels), E « e*" 4 e 7T o the
in term in the bracket is real. Remember c. c. is the complex conjugate, so

the RHS is zero.

For the spiral mode, E « e where k is always positive or negative, so
the equationis non-zero. That means the mode is always gaining or losing
angular momentum, causes a growth or damping of the mode depending
on the sign of k.



Fast disk cooling drives the growth of spiral eccentric modes

101 grp=0.1 ,,‘ Assess the effect of the temperature gradient term to AMD:
5 e N
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10 For the spiral mode, E o k" where k is always positive or negative.
5 One can integrate the RHS by parts and finish estimate the
oo growth/damping rate as:
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Final words:
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See Section 3.2 and Appendix D of our paper for details.




